A business-driven decomposition methodology for role mining
نویسندگان
چکیده
It is generally accepted that role mining—that is, the discovery of roles through the automatic analysis of data from existing access control systems—must count on business requirements to increase its effectiveness. Indeed, roles elicited without leveraging on business information are unlikely to be intelligible by system administrators. A business-oriented categorization of users and permissions (e.g., organizational units, job titles, cost centers, business processes, etc.) could help administrators identify the job profiles of users and, as a consequence, which roles should be assigned to them. Nonetheless, most of the existing role mining techniques yield roles that have no clear relationship with the business structure of the organization where the role mining is being applied. To face this problem, we propose a methodology that allows role engineers to leverage business information during the role finding process. The key idea is decomposing the dataset to analyze into several partitions, in a way that each partition is homogeneous from a business perspective. Each partition groups users or permissions with the same business categorization (e.g., all the users belonging to the same department, or all the permissions that support the execution of the same business process). Such partitions are then role-mined independently, hence achieving three main results: (1) elicited roles have a clearer relationship with business information; (2) mining algorithms do not seek to find commonalities among users with fundamentally different job profiles or among uncorrelated permissions; and, (3) any role mining algorithm can be used in conjunction with our approach.When several business attributes are available, analysts need to figure out which one produces the decomposition that leads to the most intelligible roles. In this paper, we describe three indexes that drive the decomposition process by measuring the quality of a given decomposition: entrustability, minability gain, and similarity gain. We compare these indexes, pointing out pros and cons. Finally, we apply our methodology on real enterprise data, showing its effectiveness and efficiency in supporting role engineering.
منابع مشابه
Mining Business-Relevant RBAC States through Decomposition
Role-based access control is widely accepted as a best practice to effectively limit system access to authorized users only. To enhance benefits, the role definition process must count on business requirements. Role mining represents an essential tool for role engineers, but most of the existing techniques cannot elicit roles with an associated clear business meaning. To this end, we propose a ...
متن کاملDomain-Driven Data Mining: A Practical Methodology
Extant data mining is based on data-driven methodologies. It either views data mining as an autonomous data-driven, trial-and-error process or only analyzes business issues in an isolated, case-by-case manner. As a result, very often the knowledge discovered generally is not interesting to real business needs. Therefore, this article proposes a practical data mining methodology referred to as d...
متن کاملThe Evolution of KDD: towards Domain-Driven Data Mining
Traditionally, data mining is an autonomous data-driven trial-and-error process. Its typical task is to let data tell a story disclosing hidden information regarding a business issue. Driven by this methodology, domain intelligence is not necessary in targeting the demonstration of an algorithm. As a result, very often knowledge discovered is not generally interesting to business needs. However...
متن کاملDomain-Driven Local Exceptional Pattern Mining for Detecting Stock Price Manipulation
Recently, a new data mining methodology, Domain Driven Data Mining (DM), has been developed. On top of data-centered pattern mining, DM generally targets the actionable knowledge discovery under domainspecific circumstances. It strongly appreciates the involvement of domain intelligence in the whole process of data mining, and consequently leads to the deliverables that can satisfy business use...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Security
دوره 31 شماره
صفحات -
تاریخ انتشار 2012